# 深入响应式原理


Vue的数据驱动,有一个很重要的体现就是数据的变更会触发DOM的变化。

<div id="app" @click="changeMsg">
  {{ message }}
</div>
var app = new Vue({
  el: '#app',
  data: {
    message: 'Hello Vue!'
  },
  methods: {
    changeMsg() {
      this.message = 'Hello World!'
    }
  }
})

这里假设我们不使用Vue的情况下,如何实现这个需求:监听点击事件,修改数据,手动操作DOM重新渲染。 这个过程最大的区别就是多了一步“手动操作DOM重新渲染”,这一步看上去并不多,但是背后有几个潜在的问题需要处理:

  1. 我们需要修改哪块DOM》
  2. 修改效率和性能是不是最优的?
  3. 我需要对数据每一次的修改都去操作DOM吗?

接下来了解Vue响应式系统的底层细节。

# 响应式对象

大多数人都知道Vue实现响应式的核心是利用ES5的Object.defineProperty,这也是Vue.js不能兼容IE8及以下浏览器的原因。

  1. Object.defineProperty Object.defineProperty方式会直接在对象上定义一个新的属性,或者修改一个对象的现有属性,并返回这个对象
Object.defineProperty(obj, prop, descriptor)

obj是要在其上定义属性的对象;prop是要定义或者修改的属性名称;descriptor是将被定义或修改的属性描述符。 descriptor里面有两个方法set和get,get是一个给属性提供的getter方法,当我们访问属性的时候会触发getter方法;set是一个给属性提供setter方法,当我们对该属性进行修改时,会触发setter方法。 Vue中就是通过改写这两个方法,将对象编程响应式对象。

  1. initState 在Vue的初始化阶段,_init方法执行的时候,会执行initState(vm),它定义在src/core/instance/state/js
export function initState (vm: Component) {
  vm._watchers = []
  const opts = vm.$options
  if (opts.props) initProps(vm, opts.props)
  if (opts.methods) initMethods(vm, opts.methods)
  if (opts.data) {
    initData(vm)
  } else {
    observe(vm._data = {}, true /* asRootData */)
  }
  if (opts.computed) initComputed(vm, opts.computed)
  if (opts.watch && opts.watch !== nativeWatch) {
    initWatch(vm, opts.watch)
  }
}

initState方法主要对props、methods、data、computed和watcher等属性进行初始化操作。

  • initProps
function initProps (vm: Component, propsOptions: Object) {
  const propsData = vm.$options.propsData || {}
  const props = vm._props = {}
  // cache prop keys so that future props updates can iterate using Array
  // instead of dynamic object key enumeration.
  const keys = vm.$options._propKeys = []
  const isRoot = !vm.$parent
  // root instance props should be converted
  if (!isRoot) {
    toggleObserving(false)
  }
  for (const key in propsOptions) {
    keys.push(key)
    const value = validateProp(key, propsOptions, propsData, vm)
    /* istanbul ignore else */
    if (process.env.NODE_ENV !== 'production') {
      const hyphenatedKey = hyphenate(key)
      if (isReservedAttribute(hyphenatedKey) ||
          config.isReservedAttr(hyphenatedKey)) {
        warn(
          `"${hyphenatedKey}" is a reserved attribute and cannot be used as component prop.`,
          vm
        )
      }
      defineReactive(props, key, value, () => {
        if (vm.$parent && !isUpdatingChildComponent) {
          warn(
            `Avoid mutating a prop directly since the value will be ` +
            `overwritten whenever the parent component re-renders. ` +
            `Instead, use a data or computed property based on the prop's ` +
            `value. Prop being mutated: "${key}"`,
            vm
          )
        }
      })
    } else {
      defineReactive(props, key, value)
    }
    // static props are already proxied on the component's prototype
    // during Vue.extend(). We only need to proxy props defined at
    // instantiation here.
    if (!(key in vm)) {
      proxy(vm, `_props`, key)
    }
  }
  toggleObserving(true)
}

props的初始化过程,主要做了两件事,一个是调用defineReactive方法将每一个prop对应的值变成响应式的,另一个是通过proxy(vm, _props, key)将props挂在到vm上

  • initData
function initData (vm: Component) {
  let data = vm.$options.data
  data = vm._data = typeof data === 'function'
    ? getData(data, vm)
    : data || {}
  if (!isPlainObject(data)) {
    data = {}
    process.env.NODE_ENV !== 'production' && warn(
      'data functions should return an object:\n' +
      'https://vuejs.org/v2/guide/components.html#data-Must-Be-a-Function',
      vm
    )
  }
  // proxy data on instance
  const keys = Object.keys(data)
  const props = vm.$options.props
  const methods = vm.$options.methods
  let i = keys.length
  while (i--) {
    const key = keys[i]
    if (process.env.NODE_ENV !== 'production') {
      if (methods && hasOwn(methods, key)) {
        warn(
          `Method "${key}" has already been defined as a data property.`,
          vm
        )
      }
    }
    if (props && hasOwn(props, key)) {
      process.env.NODE_ENV !== 'production' && warn(
        `The data property "${key}" is already declared as a prop. ` +
        `Use prop default value instead.`,
        vm
      )
    } else if (!isReserved(key)) {
      proxy(vm, `_data`, key)
    }
  }
  // observe data
  observe(data, true /* asRootData */)
}

data的初始化主要过程也是做两件事,一个是定义data函数返回对象的遍历,通过proxy把每一个值vm._data.xxx都代理到vm.xxx;另一个是调用observe方法,观测data的变化,把data也变成响应式

  1. proxy 代理的作用就是把props和data上的属性代理到vm实例上
let comP = {
  props: {
    msg: 'hello'
  },
  methods: {
    say() {
      console.log(this.msg)
    }
  }
}

我们可以在say函数中通过this.msg访问到我们定义在props中的msg,这个过程发生在proxy阶段

const sharedPropertyDefinition = {
  enumerable: true,
  configurable: true,
  get: noop,
  set: noop
}

export function proxy (target: Object, sourceKey: string, key: string) {
  sharedPropertyDefinition.get = function proxyGetter () {
    return this[sourceKey][key]
  }
  sharedPropertyDefinition.set = function proxySetter (val) {
    this[sourceKey][key] = val
  }
  Object.defineProperty(target, key, sharedPropertyDefinition)
}

proxy的实现方式是通过Object.defineProperty把target[source][key]的读写变成了对target[key]的读写。 对props而言,对vm._props.xxx的读写就变成了vm.xxx的读写 对data而言,对vm._data.xxx的读写就变成了对vm.xxx的读写

  1. observe

observe的功能就是用来检测数据的变化,它定义在src/core/observer/index.js

/**
 * Attempt to create an observer instance for a value,
 * returns the new observer if successfully observed,
 * or the existing observer if the value already has one.
 */
export function observe (value: any, asRootData: ?boolean): Observer | void {
  if (!isObject(value) || value instanceof VNode) {
    return
  }
  let ob: Observer | void
  if (hasOwn(value, '__ob__') && value.__ob__ instanceof Observer) {
    ob = value.__ob__
  } else if (
    shouldObserve &&
    !isServerRendering() &&
    (Array.isArray(value) || isPlainObject(value)) &&
    Object.isExtensible(value) &&
    !value._isVue
  ) {
    ob = new Observer(value)
  }
  if (asRootData && ob) {
    ob.vmCount++
  }
  return ob
}

observe方法的作用就是给非VNode的对象类型数据添加一个Observer,如果已经添加过则直接返回,否则在满足一定条件下去实例化一个Observer对象实例

  1. Observer Observer是一个类,作用是给对象的属性添加getter和setter,用于依赖收集和派发更新:
/**
 * Observer class that is attached to each observed
 * object. Once attached, the observer converts the target
 * object's property keys into getter/setters that
 * collect dependencies and dispatch updates.
 */
export class Observer {
  value: any;
  dep: Dep;
  vmCount: number; // number of vms that has this object as root $data

  constructor (value: any) {
    this.value = value
    this.dep = new Dep()
    this.vmCount = 0
    def(value, '__ob__', this)
    if (Array.isArray(value)) {
      const augment = hasProto
        ? protoAugment
        : copyAugment
      augment(value, arrayMethods, arrayKeys)
      this.observeArray(value)
    } else {
      this.walk(value)
    }
  }

  /**
   * Walk through each property and convert them into
   * getter/setters. This method should only be called when
   * value type is Object.
   */
  walk (obj: Object) {
    const keys = Object.keys(obj)
    for (let i = 0; i < keys.length; i++) {
      defineReactive(obj, keys[i])
    }
  }

  /**
   * Observe a list of Array items.
   */
  observeArray (items: Array<any>) {
    for (let i = 0, l = items.length; i < l; i++) {
      observe(items[i])
    }
  }
}

Observer的构造函数逻辑很简单,首先实例化Dep对象,然后通过def函数把自身的实例添加到数据对象value的__ob__属性上,def的定义在src/core/util/lang.js

/**
 * Define a property.
 */
export function def (obj: Object, key: string, val: any, enumerable?: boolean) {
  Object.defineProperty(obj, key, {
    value: val,
    enumerable: !!enumerable,
    writable: true,
    configurable: true
  })
}

def函数就是堆Object.defineProperty的封装,这又是为什么在开发中输出data上对象类型的数据,会发现多了一个__ob__的属性 在Observer的构造函数中,会对value作判断,如果是数组的话,会调用observeArray方法,否则调用walk方法 而walk方法是遍历对象,然后执行defineReactive方法

  1. defineReactive

defineReactive的功能就是定义一个响应式对象,给对象动态添加getter和setter,它定义在src/core/observer/index.js中:

/**
 * Define a reactive property on an Object.
 */
export function defineReactive (
  obj: Object,
  key: string,
  val: any,
  customSetter?: ?Function,
  shallow?: boolean
) {
  const dep = new Dep()

  const property = Object.getOwnPropertyDescriptor(obj, key)
  if (property && property.configurable === false) {
    return
  }

  // cater for pre-defined getter/setters
  const getter = property && property.get
  const setter = property && property.set
  if ((!getter || setter) && arguments.length === 2) {
    val = obj[key]
  }

  let childOb = !shallow && observe(val)
  Object.defineProperty(obj, key, {
    enumerable: true,
    configurable: true,
    get: function reactiveGetter () {
      const value = getter ? getter.call(obj) : val
      if (Dep.target) {
        dep.depend()
        if (childOb) {
          childOb.dep.depend()
          if (Array.isArray(value)) {
            dependArray(value)
          }
        }
      }
      return value
    },
    set: function reactiveSetter (newVal) {
      const value = getter ? getter.call(obj) : val
      /* eslint-disable no-self-compare */
      if (newVal === value || (newVal !== newVal && value !== value)) {
        return
      }
      /* eslint-enable no-self-compare */
      if (process.env.NODE_ENV !== 'production' && customSetter) {
        customSetter()
      }
      if (setter) {
        setter.call(obj, newVal)
      } else {
        val = newVal
      }
      childOb = !shallow && observe(newVal)
      dep.notify()
    }
  })
}

defineReactive函数最开始初始化Dep对象的实例,接着拿到obj的属性描述符,然后对子对象递归调用observe方法,这样就能保证无论obj的结果多复杂,它的所有子属性也能变成响应式的对象。 最后利用Object.defineProperty去给obj的属性key添加getter和setter。

# 依赖收集

Vue会把普通对象变成响应式对象,响应式对象getter相关的逻辑爱就是做依赖收集

export function defineReactive (
  obj: Object,
  key: string,
  val: any,
  customSetter?: ?Function,
  shallow?: boolean
) {
  const dep = new Dep()

  const property = Object.getOwnPropertyDescriptor(obj, key)
  if (property && property.configurable === false) {
    return
  }

  // cater for pre-defined getter/setters
  const getter = property && property.get
  const setter = property && property.set
  if ((!getter || setter) && arguments.length === 2) {
    val = obj[key]
  }

  let childOb = !shallow && observe(val)
  Object.defineProperty(obj, key, {
    enumerable: true,
    configurable: true,
    get: function reactiveGetter () {
      const value = getter ? getter.call(obj) : val
      if (Dep.target) {
        dep.depend()
        if (childOb) {
          childOb.dep.depend()
          if (Array.isArray(value)) {
            dependArray(value)
          }
        }
      }
      return value
    },
    // ...
  })
}

这里需要注意两个地方,一个是const dep = new Dep() 实例化一个Dep的实例,另一个是在get函数中通过dep.depend做依赖收集

  1. Dep Dep是整个getter依赖收集的核心,定义在src/core/observer/dep.js
import type Watcher from './watcher'
import { remove } from '../util/index'

let uid = 0

/**
 * A dep is an observable that can have multiple
 * directives subscribing to it.
 */
export default class Dep {
  static target: ?Watcher;
  id: number;
  subs: Array<Watcher>;

  constructor () {
    this.id = uid++
    this.subs = []
  }

  addSub (sub: Watcher) {
    this.subs.push(sub)
  }

  removeSub (sub: Watcher) {
    remove(this.subs, sub)
  }

  depend () {
    if (Dep.target) {
      Dep.target.addDep(this)
    }
  }

  notify () {
    // stabilize the subscriber list first
    const subs = this.subs.slice()
    for (let i = 0, l = subs.length; i < l; i++) {
      subs[i].update()
    }
  }
}

// the current target watcher being evaluated.
// this is globally unique because there could be only one
// watcher being evaluated at any time.
Dep.target = null
const targetStack = []

export function pushTarget (_target: ?Watcher) {
  if (Dep.target) targetStack.push(Dep.target)
  Dep.target = _target
}

export function popTarget () {
  Dep.target = targetStack.pop()
}

Dep是一个Class,它定义了一些属性和方法,这里需要特别注意的是它有一个静态属性target,这是一个全局唯一Watcher,在同一时间只能有一个全局的Watcher被计算,它自身的属性subs也是Watcher的数组

Dep实际上就是对Watcher的一种管理,Dep脱离Watcher单独存在是没有意义的

  1. Watcher
let uid = 0

/**
 * A watcher parses an expression, collects dependencies,
 * and fires callback when the expression value changes.
 * This is used for both the $watch() api and directives.
 */
export default class Watcher {
  vm: Component;
  expression: string;
  cb: Function;
  id: number;
  deep: boolean;
  user: boolean;
  computed: boolean;
  sync: boolean;
  dirty: boolean;
  active: boolean;
  dep: Dep;
  deps: Array<Dep>;
  newDeps: Array<Dep>;
  depIds: SimpleSet;
  newDepIds: SimpleSet;
  before: ?Function;
  getter: Function;
  value: any;

  constructor (
    vm: Component,
    expOrFn: string | Function,
    cb: Function,
    options?: ?Object,
    isRenderWatcher?: boolean
  ) {
    this.vm = vm
    if (isRenderWatcher) {
      vm._watcher = this
    }
    vm._watchers.push(this)
    // options
    if (options) {
      this.deep = !!options.deep
      this.user = !!options.user
      this.computed = !!options.computed
      this.sync = !!options.sync
      this.before = options.before
    } else {
      this.deep = this.user = this.computed = this.sync = false
    }
    this.cb = cb
    this.id = ++uid // uid for batching
    this.active = true
    this.dirty = this.computed // for computed watchers
    this.deps = []
    this.newDeps = []
    this.depIds = new Set()
    this.newDepIds = new Set()
    this.expression = process.env.NODE_ENV !== 'production'
      ? expOrFn.toString()
      : ''
    // parse expression for getter
    if (typeof expOrFn === 'function') {
      this.getter = expOrFn
    } else {
      this.getter = parsePath(expOrFn)
      if (!this.getter) {
        this.getter = function () {}
        process.env.NODE_ENV !== 'production' && warn(
          `Failed watching path: "${expOrFn}" ` +
          'Watcher only accepts simple dot-delimited paths. ' +
          'For full control, use a function instead.',
          vm
        )
      }
    }
    if (this.computed) {
      this.value = undefined
      this.dep = new Dep()
    } else {
      this.value = this.get()
    }
  }

  /**
   * Evaluate the getter, and re-collect dependencies.
   */
  get () {
    pushTarget(this)
    let value
    const vm = this.vm
    try {
      value = this.getter.call(vm, vm)
    } catch (e) {
      if (this.user) {
        handleError(e, vm, `getter for watcher "${this.expression}"`)
      } else {
        throw e
      }
    } finally {
      // "touch" every property so they are all tracked as
      // dependencies for deep watching
      if (this.deep) {
        traverse(value)
      }
      popTarget()
      this.cleanupDeps()
    }
    return value
  }

  /**
   * Add a dependency to this directive.
   */
  addDep (dep: Dep) {
    const id = dep.id
    if (!this.newDepIds.has(id)) {
      this.newDepIds.add(id)
      this.newDeps.push(dep)
      if (!this.depIds.has(id)) {
        dep.addSub(this)
      }
    }
  }

  /**
   * Clean up for dependency collection.
   */
  cleanupDeps () {
    let i = this.deps.length
    while (i--) {
      const dep = this.deps[i]
      if (!this.newDepIds.has(dep.id)) {
        dep.removeSub(this)
      }
    }
    let tmp = this.depIds
    this.depIds = this.newDepIds
    this.newDepIds = tmp
    this.newDepIds.clear()
    tmp = this.deps
    this.deps = this.newDeps
    this.newDeps = tmp
    this.newDeps.length = 0
  }
  // ...
}

Watcher是一个Class,在它的构造函数中,定义了一些和Dep相关的属性:

this.deps = []
this.newDeps = []
this.depIds = new Set()
this.newDepIds = new Set()

其中。this.deps和this.newDeps表示Watcher实例持有的Dep实例的数组;而this.depIds和this.newDepIds分别代表this.deps和this.newDeps的id Set。

Watcher还定义了一些原型的方法,和依赖收集相关的有get、addDep和cleanDeps方法。

  1. 过程分析 对数据对象访问会触发他们的getter,那么这些对象什么时候被访问呢,在Vue的mount过程是通过mountComponent函数,其中有一段
updateComponent = () => {
  vm._update(vm._render(), hydrating)
}
new Watcher(vm, updateComponent, noop, {
  before () {
    if (vm._isMounted) {
      callHook(vm, 'beforeUpdate')
    }
  }
}, true /* isRenderWatcher */)

当我们去实例化一个Watcher的时候,首先会进入watcher的构造函数,最后会执行它的this.get()方法,进入get函数,首先会执行:

pushTarget(this)

pushTarget的定义在src/core/observer/dep.js

export function pushTarget (_target: ?Watcher) {
  if (Dep.target) targetStack.push(Dep.target)
  Dep.target = _target
}

实际上就是把Dep.target赋值为当前的渲染watcher并压栈(为了恢复用)。接着又执行了:

value = this.getter.call(vm, vm)

this.getter对应就是updateComponent函数,实际上执行的就行

vm._update(vm._render(), hydrating)

它会先执行vm._render()方法,因为之前分析过这个方法会生成VNode,并且在这个过程中,会对vm上的数据访问,这个时候就触发了数据对象的getter

那么每个对象值的getter都持有一个dep,在触发getter的时候会调用dep.depend()方法,也就是会执行Dep.target.addDep(this)

刚才我们提到这个时候Dep.target已经被赋值为渲染watcher,那么就执行到addDep方法:

addDep (dep: Dep) {
  const id = dep.id
  if (!this.newDepIds.has(id)) {
    this.newDepIds.add(id)
    this.newDeps.push(dep)
    if (!this.depIds.has(id)) {
      dep.addSub(this)
    }
  }
}

这时候会做一些逻辑判断(保证同一数据不会被添加多次)后执行dep.addSub(this),也就是this.sub.push(sub),就是把当前的watcher订阅到这个数据持有的dep的subs中,这个目的是为了后续数据变化的时候能通知到哪些subs做准备。

所以在vm._render()过程中,会触发所有的getter,这样实际上已经完成了一个依赖收集的过程。依赖收集后,还有几个逻辑要执行:

if (this.deep) {
  traverse(value)
}

这个是要递归去访问value,触发所有子项的getter

popTarget()

popTarget定义在src/core/observer/dep.js

Dep.target = targetStack.pop()

实际上就是把Dep.target恢复成上一个状态,因为当前vm的数据依赖收集已经完成,那么对应渲染的Dep.target也需要改变,最后执行

this.cleanupDeps()

进行依赖清空

cleanupDeps () {
  let i = this.deps.length
  while (i--) {
    const dep = this.deps[i]
    if (!this.newDepIds.has(dep.id)) {
      dep.removeSub(this)
    }
  }
  let tmp = this.depIds
  this.depIds = this.newDepIds
  this.newDepIds = tmp
  this.newDepIds.clear()
  tmp = this.deps
  this.deps = this.newDeps
  this.newDeps = tmp
  this.newDeps.length = 0
}

考虑到Vue是数据驱动的,所以每次数据变化都会重新render,那么vm._render()方法又会再次执行,并再次触发数据的getters,所以Watcher在构造函数中会初始化两个Dep实例数组,newDeps表示新的,deps表示上一次的

在执行cleanupDeps函数式,会先遍历deps,移除对dep的订阅,然后把newDepIds和depIds交互,newDeps和deps交换,并把newDepIds和newDeps清空。

为什么要做deps订阅的移除呢,在添加deps的订阅过程,已经能通过id去重避免重复定位了。

考虑到一种场景,我们的模板会根据v-if去渲染不同的子模板a和b,当我们满足某种条件的时候渲染a时,会访问a中的数据,这时候我们对a使用的数据添加了getter,做了依赖收集,那么我们修改a的数据时,就会通知这些订阅者。 如果我们修改了条件转而渲染b模板,又会对b使用的数据添加getter,如果我们没有依赖移除的过程,那么我们去修改a的时候,还会通知a数据的订阅的回调,显然是浪费的。

因此Vue设计了再每次添加完新的订阅,会移除掉旧的订阅,这样就能刚才所说的场景下,如果渲染 b 模板的时候去修改 a 模板的数据,a 数据订阅回调已经被移除了,不造成性能的浪费。

brief:收集依赖的目的就是为了这些响应式数据发送变化时,会触发它们的setter从而通知订阅者去做相应的逻辑处理,这个过程我们叫作派发更新。

# 派发更新

响应式数据的依赖收集,目的就是为了我们修改数据的时候,可以对相关的依赖派发更新 这里回顾一下setter的部分逻辑

/**
 * Define a reactive property on an Object.
 */
export function defineReactive (
  obj: Object,
  key: string,
  val: any,
  customSetter?: ?Function,
  shallow?: boolean
) {
  const dep = new Dep()

  const property = Object.getOwnPropertyDescriptor(obj, key)
  if (property && property.configurable === false) {
    return
  }

  // cater for pre-defined getter/setters
  const getter = property && property.get
  const setter = property && property.set
  if ((!getter || setter) && arguments.length === 2) {
    val = obj[key]
  }

  let childOb = !shallow && observe(val)
  Object.defineProperty(obj, key, {
    enumerable: true,
    configurable: true,
    // ...
    set: function reactiveSetter (newVal) {
      const value = getter ? getter.call(obj) : val
      /* eslint-disable no-self-compare */
      if (newVal === value || (newVal !== newVal && value !== value)) {
        return
      }
      /* eslint-enable no-self-compare */
      if (process.env.NODE_ENV !== 'production' && customSetter) {
        customSetter()
      }
      if (setter) {
        setter.call(obj, newVal)
      } else {
        val = newVal
      }
      childOb = !shallow && observe(newVal)
      dep.notify()
    }
  })
}

这里有两个关键点,一个是 childOb = !shallow && observe(newVal),如果shallow为false的情况,会将新设置的值变成一个响应式对象; 另一个是dep.notify(),通知所有的订阅者。

# 检测变化的注意事项

有几种特殊情况下,Vue是无法检测到响应式对象的改变

  1. 对象添加属性 对于使用Object.defineProperty实现响应式对象,但我们去给这个对象添加一个新的属性的时候,是无法出发它的setter的
var vm = new Vue({
  data:{
    a:1
  }
})
// vm.b 是非响应的
vm.b = 2

这里我们可以使用Vue.set方法解决这个问题,它定义在src/core/observer/index.js

/**
 * Set a property on an object. Adds the new property and
 * triggers change notification if the property doesn't
 * already exist.
 */
export function set (target: Array<any> | Object, key: any, val: any): any {
  if (process.env.NODE_ENV !== 'production' &&
    (isUndef(target) || isPrimitive(target))
  ) {
    warn(`Cannot set reactive property on undefined, null, or primitive value: ${(target: any)}`)
  }
  if (Array.isArray(target) && isValidArrayIndex(key)) {
    target.length = Math.max(target.length, key)
    target.splice(key, 1, val)
    return val
  }
  if (key in target && !(key in Object.prototype)) {
    target[key] = val
    return val
  }
  const ob = (target: any).__ob__
  if (target._isVue || (ob && ob.vmCount)) {
    process.env.NODE_ENV !== 'production' && warn(
      'Avoid adding reactive properties to a Vue instance or its root $data ' +
      'at runtime - declare it upfront in the data option.'
    )
    return val
  }
  if (!ob) {
    target[key] = val
    return val
  }
  defineReactive(ob.value, key, val)
  ob.dep.notify()
  return val
}

set接受三个参数,target是数组或对象,key代表数组的下标或者对象的键值,val代表添加的值。首先判断如果target是数组且key是一个合法的下标,则之前通过splice去添加数组然后返回(这里的splice是vue改写后的splice)。 接在再获取到target.ob,如果它不存在则说明target不是一个响应式对象,最后通过defineReactive(ob.value, key, val)把新添加的属性变成响应式对象,然后通过ob.dep.notify()手动的触发依赖。

# 计算属性和侦听属性

  1. computed 计算属性的初始化发生在Vue实例初始化阶段initState函数中,initComputed定义在src/core/instance/state.js
const computedWatcherOptions = { computed: true }
function initComputed (vm: Component, computed: Object) {
  // $flow-disable-line
  const watchers = vm._computedWatchers = Object.create(null)
  // computed properties are just getters during SSR
  const isSSR = isServerRendering()

  for (const key in computed) {
    const userDef = computed[key]
    const getter = typeof userDef === 'function' ? userDef : userDef.get
    if (process.env.NODE_ENV !== 'production' && getter == null) {
      warn(
        `Getter is missing for computed property "${key}".`,
        vm
      )
    }

    if (!isSSR) {
      // create internal watcher for the computed property.
      watchers[key] = new Watcher(
        vm,
        getter || noop,
        noop,
        computedWatcherOptions
      )
    }

    // component-defined computed properties are already defined on the
    // component prototype. We only need to define computed properties defined
    // at instantiation here.
    if (!(key in vm)) {
      defineComputed(vm, key, userDef)
    } else if (process.env.NODE_ENV !== 'production') {
      if (key in vm.$data) {
        warn(`The computed property "${key}" is already defined in data.`, vm)
      } else if (vm.$options.props && key in vm.$options.props) {
        warn(`The computed property "${key}" is already defined as a prop.`, vm)
      }
    }
  }
}

函数首先会创造一个vm._computedWatchers为一个空对象。接着对computed属性进行遍历,拿到每一个属性的userDef,然后尝试获取对应的userDef或者getter(拿不到则报错),这个渲染watcher和render watcher有一个不同,是options里面的computed属性为true,即表明其为computed watcher,最后会判断key是不是vm的属性,如果不是则调用defineComputed,否则报错。 defineComputed

export function defineComputed (
  target: any,
  key: string,
  userDef: Object | Function
) {
  const shouldCache = !isServerRendering()
  if (typeof userDef === 'function') {
    sharedPropertyDefinition.get = shouldCache
      ? createComputedGetter(key)
      : userDef
    sharedPropertyDefinition.set = noop
  } else {
    sharedPropertyDefinition.get = userDef.get
      ? shouldCache && userDef.cache !== false
        ? createComputedGetter(key)
        : userDef.get
      : noop
    sharedPropertyDefinition.set = userDef.set
      ? userDef.set
      : noop
  }
  if (process.env.NODE_ENV !== 'production' &&
      sharedPropertyDefinition.set === noop) {
    sharedPropertyDefinition.set = function () {
      warn(
        `Computed property "${key}" was assigned to but it has no setter.`,
        this
      )
    }
  }
  Object.defineProperty(target, key, sharedPropertyDefinition)
}

defineComputed就是调用Object.defineProperty给计算属性对应的key值添加getter和setter。 计算属性的getter对应的为createComputedGetter的返回值

function createComputedGetter (key) {
  return function computedGetter () {
    const watcher = this._computedWatchers && this._computedWatchers[key]
    if (watcher) {
      watcher.depend()
      return watcher.evaluate()
    }
  }
}

createComputedGetter返回一个函数computedGetter,即该计算属性对应的getter。

简单分析一个computed watcher的实现。

var vm = new Vue({
  data: {
    firstName: 'Foo',
    lastName: 'Bar'
  },
  computed: {
    fullName: function () {
      return this.firstName + ' ' + this.lastName
    }
  }
})

初始化时

constructor (
  vm: Component,
  expOrFn: string | Function,
  cb: Function,
  options?: ?Object,
  isRenderWatcher?: boolean
) {
  // ...
  if (this.computed) {
    this.value = undefined
    this.dep = new Dep()
  } else {
    this.value = this.get()
  }
}  

可以发现computed不会立刻求职,并且会持有一个dep实例

然后render函数访问到this.fullName的时候,就会触发计算属性的getter,它会拿到计算属性对应的watcher,然后执行计算属性的watcher,并执行watcher.depend()

/**
  * Depend on this watcher. Only for computed property watchers.
  */
depend () {
  if (this.dep && Dep.target) {
    this.dep.depend()
  }
}

这时候的Dep.target是render watcher,所以ths.dep.depend()相当于渲染watcher订阅了这个computed watcher的变化

然后执行watcher.evaluate()去求值。

/**
  * Evaluate and return the value of the watcher.
  * This only gets called for computed property watchers.
  */
evaluate () {
  if (this.dirty) {
    this.value = this.get()
    this.dirty = false
  }
  return this.value
}

evaluate的逻辑非常简单,判断this.dirty,如果为true则执行this.get()求值,然后把this.dirty设置为false。 在求值过程中会执行value=this.getter.call(vm,vm),实际上就是执行了计算属性定义的getter函数(在这个例子中就是return this.firstName + '' + this.lastName) 这里会触发this.firstName和this.lastName的getter,也就会把自身持有的dep添加到当前正在计算的watcher中,这个时候Dep.target就是这个computed watcher 最后通过return this.value拿到计算属性对应的值。 一旦我们对计算属性依赖的数据做修改,则会触发setter过程,通知所有订阅它变化的watcher更新,执行watcher.update()方法。

/* istanbul ignore else */
if (this.computed) {
  // A computed property watcher has two modes: lazy and activated.
  // It initializes as lazy by default, and only becomes activated when
  // it is depended on by at least one subscriber, which is typically
  // another computed property or a component's render function.
  if (this.dep.subs.length === 0) {
    // In lazy mode, we don't want to perform computations until necessary,
    // so we simply mark the watcher as dirty. The actual computation is
    // performed just-in-time in this.evaluate() when the computed property
    // is accessed.
    this.dirty = true
  } else {
    // In activated mode, we want to proactively perform the computation
    // but only notify our subscribers when the value has indeed changed.
    this.getAndInvoke(() => {
      this.dep.notify()
    })
  }
} else if (this.sync) {
  this.run()
} else {
  queueWatcher(this)
}

那么对于计算属性这样的computed watcher,它实际上有2种模式,lazy和active。如果this.dep.subs.length === 0 ,则说明没人去订阅这个computed watcher的变化,仅仅把this.dirty = true,只有当下次再访问这个计算属性的时候才会重新求值。

这里讨论如果渲染watcher订阅了这个computed watcher的变化,它会执行

this.getAndInvoke(() => {
  this.dep.notify()
})

getAndInvoke (cb: Function) {
  const value = this.get()
  if (
    value !== this.value ||
    // Deep watchers and watchers on Object/Arrays should fire even
    // when the value is the same, because the value may
    // have mutated.
    isObject(value) ||
    this.deep
  ) {
    // set new value
    const oldValue = this.value
    this.value = value
    this.dirty = false
    if (this.user) {
      try {
        cb.call(this.vm, value, oldValue)
      } catch (e) {
        handleError(e, this.vm, `callback for watcher "${this.expression}"`)
      }
    } else {
      cb.call(this.vm, value, oldValue)
    }
  }
}

getAndInvoke函数会重新甲酸,然后比对新旧值,如果变化了则执行回调函数(即this.dep.notify()),在这个场景下就是触发了渲染watcher重新渲染。

通过分析,我们知道计算属性的本质就是computed watcher,之所以这么设计是因为Vue想确保不仅仅是计算属性依赖的值发生变化,而是当计算属性最终计算的值变化才触发watcher重新渲染。

  1. watch

侦听属性的初始化也是发生在Vue的实例初始化阶段的initState函数中,在computed初始化之后,执行了

if (opts.watch && opts.watch !== nativeWatch) {
  initWatch(vm, opts.watch)
}

来看一下initWatch的实现,它的定义在src/core/instance/state.js

function initWatch (vm: Component, watch: Object) {
  for (const key in watch) {
    const handler = watch[key]
    if (Array.isArray(handler)) {
      for (let i = 0; i < handler.length; i++) {
        createWatcher(vm, key, handler[i])
      }
    } else {
      createWatcher(vm, key, handler)
    }
  }
}

这里就是对watch对象做遍历,拿到每一个handler,因为Vue是支持watch的同一个key对应多个handler,所以如果handler是一个数组,则遍历这个数组,调用createWatcher方法,否则直接调用createWatcher

function createWatcher (
  vm: Component,
  expOrFn: string | Function,
  handler: any,
  options?: Object
) {
  if (isPlainObject(handler)) {
    options = handler
    handler = handler.handler
  }
  if (typeof handler === 'string') {
    handler = vm[handler]
  }
  return vm.$watch(expOrFn, handler, options)
}

这里的逻辑,首先对handler的类型做判断,拿到它最终的回调函数,最后执行vm.$watch(keyOrFn, handler, options)函数,$watch是Vue原型上的方法,在stateMixin的时候定义:

Vue.prototype.$watch = function (
  expOrFn: string | Function,
  cb: any,
  options?: Object
): Function {
  const vm: Component = this
  if (isPlainObject(cb)) {
    return createWatcher(vm, expOrFn, cb, options)
  }
  options = options || {}
  options.user = true
  const watcher = new Watcher(vm, expOrFn, cb, options)
  if (options.immediate) {
    cb.call(vm, watcher.value)
  }
  return function unwatchFn () {
    watcher.teardown()
  }
}

侦听属性watch最终会调用$watch方法,这个方法首先判断cb如果是一个对象,则调用createWatcher方法,这是因为$watch方法是用户可以直接调用的,它可以传递一个对象,也可以传递函数。 接着执行const watcher = new Watcher(vm, expOrFn, cb, options)实例化一个watche,因为options.user = true,所以这里为初始化一个user watcher。 如果watch的数据发生变化,最终会执行watcher的run方法,执行回调函数cb,如果设置了immediate为true,则会立即执行函数。 最后返回了一个unwatchFn方法,它会调用teardown方法去移除这个watcher。 所以本质上侦听属性也是基于Watcher实现的,它是一个user watcher,其实watcher也支持不同的类型。

  1. Watcher options

Watch的构造函数对options做的了处理,代码如下:

if (options) {
  this.deep = !!options.deep
  this.user = !!options.user
  this.computed = !!options.computed
  this.sync = !!options.sync
  // ...
} else {
  this.deep = this.user = this.computed = this.sync = false
}

所以watcher总共有4种类型

  • deep watcher

通常我们想对一个对象做深度观测的时候,需要设置这个属性

var vm = new Vue({
  data() {
    a: {
      b: 1
    }
  },
  watch: {
    a: {
      handler(newVal) {
        console.log(newVal)
      }
    }
  }
})
vm.a.b = 2

这里不会触发a的watch,因为只会订阅到a的getter,不会订阅到a.b的getter。 需要将其修改成

watch: {
  a: {
    deep: true,
    handler(newVal) {
      console.log(newVal)
    }
  }
}

这样就创建了一个deep watcher,在watcher执行get求值的过程中有一段逻辑

get() {
  let value = this.getter.call(vm, vm)
  // ...
  if (this.deep) {
    traverse(value)
  }
}

traverse函数定义在src/core/observer/traverse.js

import { _Set as Set, isObject } from '../util/index'
import type { SimpleSet } from '../util/index'
import VNode from '../vdom/vnode'

const seenObjects = new Set()

/**
 * Recursively traverse an object to evoke all converted
 * getters, so that every nested property inside the object
 * is collected as a "deep" dependency.
 */
export function traverse (val: any) {
  _traverse(val, seenObjects)
  seenObjects.clear()
}

function _traverse (val: any, seen: SimpleSet) {
  let i, keys
  const isA = Array.isArray(val)
  if ((!isA && !isObject(val)) || Object.isFrozen(val) || val instanceof VNode) {
    return
  }
  if (val.__ob__) {
    const depId = val.__ob__.dep.id
    if (seen.has(depId)) {
      return
    }
    seen.add(depId)
  }
  if (isA) {
    i = val.length
    while (i--) _traverse(val[i], seen)
  } else {
    keys = Object.keys(val)
    i = keys.length
    while (i--) _traverse(val[keys[i]], seen)
  }
}

traverse实际上就是对一个对象进行深层递归遍历,遍历过程中会对触发子对象的getter,这样就能收集到依赖,也就是订阅它们变化的watcher。 那么在执行了traverse后,我们再对watch的对象内部任何一个值做修改,也会调用watcher的回调函数。

  • user watcher

没有任何options时,通过vm.$watch创建的一个最基本的watcher

  • computed watcher

计算属性

  • sync watcher

当响应式数据发生变化后,触发了watcher.update(),只是把watcher推送到一个队列中,然后在nextTick后才会真正的执行watcher的回调函数。 如果设置了sync为true,就会在当前Tick中同步执行watcher的回调函数。

update () {
  if (this.computed) {
    // ...
  } else if (this.sync) {
    this.run()
  } else {
    queueWatcher(this)
  }
}

当需要watch的值变化时,回调为一个同步函数,才需要去设置sync值。

brief:通过对watcher的了解,计算属性本质上是computed watcher,而侦听属性实际上是user watcher。 计算属性适合用于模板渲染中,某个值是依赖其他响应式对象甚至是计算属性而来,不宜做大量和复杂的处理。 侦听属性适用于观测某个值去完成一段复杂的业务逻辑。

# 组件更新

当数据发生变化的时候,会触发watcher的回调函数,进而执行组件的更新过程。接下来分析这个过程。

updateComponent = () => {
  vm._update(vm._render(), hydrating)
}
new Watcher(vm, updateComponent, noop, {
  before () {
    if (vm._isMounted) {
      callHook(vm, 'beforeUpdate')
    }
  }
}, true /* isRenderWatcher */)

组件的更新调用了vm._update方法,定义在src/core/instance/lifeCycle.js

Vue.prototype._update = function (vnode: VNode, hydrating?: boolean) {
  const vm: Component = this
  // ...
  const prevVnode = vm._vnode
  if (!prevVnode) {
     // initial render
    vm.$el = vm.__patch__(vm.$el, vnode, hydrating, false /* removeOnly */)
  } else {
    // updates
    vm.$el = vm.__patch__(prevVnode, vnode)
  }
  // ...
}

组件更新的过程,会执行vm.$el = vm.patch(prevVnode, vnode),它仍然会调用patch函数,在src/core/vdom/patch.js

return function patch (oldVnode, vnode, hydrating, removeOnly) {
  if (isUndef(vnode)) {
    if (isDef(oldVnode)) invokeDestroyHook(oldVnode)
    return
  }

  let isInitialPatch = false
  const insertedVnodeQueue = []

  if (isUndef(oldVnode)) {
    // empty mount (likely as component), create new root element
    isInitialPatch = true
    createElm(vnode, insertedVnodeQueue)
  } else {
    const isRealElement = isDef(oldVnode.nodeType)
    if (!isRealElement && sameVnode(oldVnode, vnode)) {
      // patch existing root node
      patchVnode(oldVnode, vnode, insertedVnodeQueue, removeOnly)
    } else {
      if (isRealElement) {
         // ...
      }

      // replacing existing element
      const oldElm = oldVnode.elm
      const parentElm = nodeOps.parentNode(oldElm)

      // create new node
      createElm(
        vnode,
        insertedVnodeQueue,
        // extremely rare edge case: do not insert if old element is in a
        // leaving transition. Only happens when combining transition +
        // keep-alive + HOCs. (#4590)
        oldElm._leaveCb ? null : parentElm,
        nodeOps.nextSibling(oldElm)
      )

      // update parent placeholder node element, recursively
      if (isDef(vnode.parent)) {
        let ancestor = vnode.parent
        const patchable = isPatchable(vnode)
        while (ancestor) {
          for (let i = 0; i < cbs.destroy.length; ++i) {
            cbs.destroy[i](ancestor)
          }
          ancestor.elm = vnode.elm
          if (patchable) {
            for (let i = 0; i < cbs.create.length; ++i) {
              cbs.create[i](emptyNode, ancestor)
            }
            // #6513
            // invoke insert hooks that may have been merged by create hooks.
            // e.g. for directives that uses the "inserted" hook.
            const insert = ancestor.data.hook.insert
            if (insert.merged) {
              // start at index 1 to avoid re-invoking component mounted hook
              for (let i = 1; i < insert.fns.length; i++) {
                insert.fns[i]()
              }
            }
          } else {
            registerRef(ancestor)
          }
          ancestor = ancestor.parent
        }
      }

      // destroy old node
      if (isDef(parentElm)) {
        removeVnodes(parentElm, [oldVnode], 0, 0)
      } else if (isDef(oldVnode.tag)) {
        invokeDestroyHook(oldVnode)
      }
    }
  }

  invokeInsertHook(vnode, insertedVnodeQueue, isInitialPatch)
  return vnode.elm
}

这里执行patch的逻辑和首次渲染不一样,因为oldVnode不为空,并且它和vnode都是VNode类型,接下来会通过sameVNode(oldVnode, vnode)判断他们是否是相同的vnode来觉得走不同的更新逻辑

function sameVnode (a, b) {
  return (
    a.key === b.key && (
      (
        a.tag === b.tag &&
        a.isComment === b.isComment &&
        isDef(a.data) === isDef(b.data) &&
        sameInputType(a, b)
      ) || (
        isTrue(a.isAsyncPlaceholder) &&
        a.asyncFactory === b.asyncFactory &&
        isUndef(b.asyncFactory.error)
      )
    )
  )
}

sameVnode,首先判断两个vnode的key是否相等,否则继续判断对于同步组件,则判断isComment、data、input类似是否相等,对于异步组件则判断asyncFactory是否相等。 所有根据新旧vnode是否为sameVnode,会走到不同的更新逻辑。

  1. 新旧节点不同

如果新旧vnode不同,那么逻辑本质就是要替换已存在的节点,这其中分为三步

  • 创建新节点
const oldElm = oldVnode.elm
const parentElm = nodeOps.parentNode(oldElm)
// create new node
createElm(
  vnode,
  insertedVnodeQueue,
  // extremely rare edge case: do not insert if old element is in a
  // leaving transition. Only happens when combining  transition +
  // keep-alive + HOCs. (#4590)
  oldElm._leaveCb ? null : parentElm,
  nodeOps.nextSibling(oldElm)
)

以当前旧节点为参考节点,创建新的节点,并插入DOM中

  • 更新父节点的占位符
// update parent placeholder node element, recursively
if (isDef(vnode.parent)) {
  let ancestor = vnode.parent
  const patchable = isPatchable(vnode)
  while (ancestor) {
    for (let i = 0; i < cbs.destroy.length; ++i) {
      cbs.destroy[i](ancestor)
    }
    ancestor.elm = vnode.elm
    if (patchable) {
      for (let i = 0; i < cbs.create.length; ++i) {
        cbs.create[i](emptyNode, ancestor)
      }
      // #6513
      // invoke insert hooks that may have been merged by create hooks.
      // e.g. for directives that uses the "inserted" hook.
      const insert = ancestor.data.hook.insert
      if (insert.merged) {
        // start at index 1 to avoid re-invoking component mounted hook
        for (let i = 1; i < insert.fns.length; i++) {
          insert.fns[i]()
        }
      }
    } else {
      registerRef(ancestor)
    }
    ancestor = ancestor.parent
  }
}

这里的主要逻辑是找到当前vnode的父的占位节点,先执行各个module的destory的钩子函数,如果当前占位符是一个可挂载的节点,则执行module的create函数。

  • 删除旧节点
// destroy old node
if (isDef(parentElm)) {
  removeVnodes(parentElm, [oldVnode], 0, 0)
} else if (isDef(oldVnode.tag)) {
  invokeDestroyHook(oldVnode)
}

把oldVnode从当前DOM树中删除,如果父节点存在,则执行removeVnodes方法:

function removeVnodes (parentElm, vnodes, startIdx, endIdx) {
  for (; startIdx <= endIdx; ++startIdx) {
    const ch = vnodes[startIdx]
    if (isDef(ch)) {
      if (isDef(ch.tag)) {
        removeAndInvokeRemoveHook(ch)
        invokeDestroyHook(ch)
      } else { // Text node
        removeNode(ch.elm)
      }
    }
  }
}

function removeAndInvokeRemoveHook (vnode, rm) {
  if (isDef(rm) || isDef(vnode.data)) {
    let i
    const listeners = cbs.remove.length + 1
    if (isDef(rm)) {
      // we have a recursively passed down rm callback
      // increase the listeners count
      rm.listeners += listeners
    } else {
      // directly removing
      rm = createRmCb(vnode.elm, listeners)
    }
    // recursively invoke hooks on child component root node
    if (isDef(i = vnode.componentInstance) && isDef(i = i._vnode) && isDef(i.data)) {
      removeAndInvokeRemoveHook(i, rm)
    }
    for (i = 0; i < cbs.remove.length; ++i) {
      cbs.remove[i](vnode, rm)
    }
    if (isDef(i = vnode.data.hook) && isDef(i = i.remove)) {
      i(vnode, rm)
    } else {
      rm()
    }
  } else {
    removeNode(vnode.elm)
  }
}

function invokeDestroyHook (vnode) {
  let i, j
  const data = vnode.data
  if (isDef(data)) {
    if (isDef(i = data.hook) && isDef(i = i.destroy)) i(vnode)
    for (i = 0; i < cbs.destroy.length; ++i) cbs.destroy[i](vnode)
  }
  if (isDef(i = vnode.children)) {
    for (j = 0; j < vnode.children.length; ++j) {
      invokeDestroyHook(vnode.children[j])
    }
  }
}

删除的逻辑就是遍历待删除的vnodes做删除。 其中removeAndInvokeRemoveHook的作用是从DOM中移除节点并执行module的remove钩子函数,并对它的子节点递归调用removeAndInvokeRemoveHook函数。 invokeDestoryHook是执行module的destory钩子函数,以及vnode的destpry钩子函数,并对它的子vnode递归调用invokeDestoryHook函数,removeNode就是调用平台的DOM API去把真正的DOM节点移除。

  1. 新旧节点相同

对于新旧节点相同的情况,对调用patchVnode方法,定义在src/core/vdom/patch.js

function patchVnode (oldVnode, vnode, insertedVnodeQueue, removeOnly) {
  if (oldVnode === vnode) {
    return
  }

  const elm = vnode.elm = oldVnode.elm

  if (isTrue(oldVnode.isAsyncPlaceholder)) {
    if (isDef(vnode.asyncFactory.resolved)) {
      hydrate(oldVnode.elm, vnode, insertedVnodeQueue)
    } else {
      vnode.isAsyncPlaceholder = true
    }
    return
  }

  // reuse element for static trees.
  // note we only do this if the vnode is cloned -
  // if the new node is not cloned it means the render functions have been
  // reset by the hot-reload-api and we need to do a proper re-render.
  if (isTrue(vnode.isStatic) &&
    isTrue(oldVnode.isStatic) &&
    vnode.key === oldVnode.key &&
    (isTrue(vnode.isCloned) || isTrue(vnode.isOnce))
  ) {
    vnode.componentInstance = oldVnode.componentInstance
    return
  }

  let i
  const data = vnode.data
  if (isDef(data) && isDef(i = data.hook) && isDef(i = i.prepatch)) {
    i(oldVnode, vnode)
  }

  const oldCh = oldVnode.children
  const ch = vnode.children
  if (isDef(data) && isPatchable(vnode)) {
    for (i = 0; i < cbs.update.length; ++i) cbs.update[i](oldVnode, vnode)
    if (isDef(i = data.hook) && isDef(i = i.update)) i(oldVnode, vnode)
  }
  if (isUndef(vnode.text)) {
    if (isDef(oldCh) && isDef(ch)) {
      if (oldCh !== ch) updateChildren(elm, oldCh, ch, insertedVnodeQueue, removeOnly)
    } else if (isDef(ch)) {
      if (isDef(oldVnode.text)) nodeOps.setTextContent(elm, '')
      addVnodes(elm, null, ch, 0, ch.length - 1, insertedVnodeQueue)
    } else if (isDef(oldCh)) {
      removeVnodes(elm, oldCh, 0, oldCh.length - 1)
    } else if (isDef(oldVnode.text)) {
      nodeOps.setTextContent(elm, '')
    }
  } else if (oldVnode.text !== vnode.text) {
    nodeOps.setTextContent(elm, vnode.text)
  }
  if (isDef(data)) {
    if (isDef(i = data.hook) && isDef(i = i.postpatch)) i(oldVnode, vnode)
  }
}

这里关键步骤有四步:

  • 执行prepatch钩子函数
let i
const data = vnode.data
if (isDef(data) && isDef(i = data.hook) && isDef(i = i.prepatch)) {
  i(oldVnode, vnode)
}

当更新的vnode是一个组件vnode的时候会执行prepatch的方法,定义在src/core/vdom/create-component.js

const componentVNodeHooks = {
  prepatch (oldVnode: MountedComponentVNode, vnode: MountedComponentVNode) {
    const options = vnode.componentOptions
    const child = vnode.componentInstance = oldVnode.componentInstance
    updateChildComponent(
      child,
      options.propsData, // updated props
      options.listeners, // updated listeners
      vnode, // new parent vnode
      options.children // new children
    )
  }
}

prepatch方法就是拿到新的vnode的组件配置以及组件实例,去执行updateChildComponent方法,它定义在src/core/instance/lifecycle.js

export function updateChildComponent (
  vm: Component,
  propsData: ?Object,
  listeners: ?Object,
  parentVnode: MountedComponentVNode,
  renderChildren: ?Array<VNode>
) {
  if (process.env.NODE_ENV !== 'production') {
    isUpdatingChildComponent = true
  }

  // determine whether component has slot children
  // we need to do this before overwriting $options._renderChildren
  const hasChildren = !!(
    renderChildren ||               // has new static slots
    vm.$options._renderChildren ||  // has old static slots
    parentVnode.data.scopedSlots || // has new scoped slots
    vm.$scopedSlots !== emptyObject // has old scoped slots
  )

  vm.$options._parentVnode = parentVnode
  vm.$vnode = parentVnode // update vm's placeholder node without re-render

  if (vm._vnode) { // update child tree's parent
    vm._vnode.parent = parentVnode
  }
  vm.$options._renderChildren = renderChildren

  // update $attrs and $listeners hash
  // these are also reactive so they may trigger child update if the child
  // used them during render
  vm.$attrs = parentVnode.data.attrs || emptyObject
  vm.$listeners = listeners || emptyObject

  // update props
  if (propsData && vm.$options.props) {
    toggleObserving(false)
    const props = vm._props
    const propKeys = vm.$options._propKeys || []
    for (let i = 0; i < propKeys.length; i++) {
      const key = propKeys[i]
      const propOptions: any = vm.$options.props // wtf flow?
      props[key] = validateProp(key, propOptions, propsData, vm)
    }
    toggleObserving(true)
    // keep a copy of raw propsData
    vm.$options.propsData = propsData
  }

  // update listeners
  listeners = listeners || emptyObject
  const oldListeners = vm.$options._parentListeners
  vm.$options._parentListeners = listeners
  updateComponentListeners(vm, listeners, oldListeners)

  // resolve slots + force update if has children
  if (hasChildren) {
    vm.$slots = resolveSlots(renderChildren, parentVnode.context)
    vm.$forceUpdate()
  }

  if (process.env.NODE_ENV !== 'production') {
    isUpdatingChildComponent = false
  }
}
  • 执行update钩子函数
if (isDef(data) && isPatchable(vnode)) {
  for (i = 0; i < cbs.update.length; ++i) cbs.update[i](oldVnode, vnode)
  if (isDef(i = data.hook) && isDef(i = i.update)) i(oldVnode, vnode)
}

回到patchVNode函数,在执行完新的vnode的prepatch钩子函数,会执行所有module的update钩子函数以及用户自定义update钩子函数,对于module的钩子函数。

  • 完成patch过程
const oldCh = oldVnode.children
const ch = vnode.children
if (isDef(data) && isPatchable(vnode)) {
  for (i = 0; i < cbs.update.length; ++i) cbs.update[i](oldVnode, vnode)
  if (isDef(i = data.hook) && isDef(i = i.update)) i(oldVnode, vnode)
}
if (isUndef(vnode.text)) {
  if (isDef(oldCh) && isDef(ch)) {
    if (oldCh !== ch) updateChildren(elm, oldCh, ch, insertedVnodeQueue, removeOnly)
  } else if (isDef(ch)) {
    if (isDef(oldVnode.text)) nodeOps.setTextContent(elm, '')
    addVnodes(elm, null, ch, 0, ch.length - 1, insertedVnodeQueue)
  } else if (isDef(oldCh)) {
    removeVnodes(elm, oldCh, 0, oldCh.length - 1)
  } else if (isDef(oldVnode.text)) {
    nodeOps.setTextContent(elm, '')
  }
} else if (oldVnode.text !== vnode.text) {
  nodeOps.setTextContent(elm, vnode.text)
}

如果vnode是个文本节点且新旧文本不同,则直接替换,如果不是文本节点,则判断它们的子节点:

  1. oldch与ch都存在切不相等,调用updateChildren
  2. 如果只有ch存在,表示旧节点已不需要了。如果旧的节点是文本节点则先将节点的文本清楚,然后通过addVnodes将ch插入新节点elm下
  3. 如果只有oldCh存在,则表明更新的是空节点,将旧节点通过removeVnode清楚
  4. 只有旧节点是文本节点时候,则清楚节点文本内容
  • 执行postpatch钩子函数
if (isDef(data)) {
  if (isDef(i = data.hook) && isDef(i = i.postpatch)) i(oldVnode, vnode)
}

再执行完patch过程后,会执行postpatch钩子函数,它是组件定义的钩子函数,有则执行。

brief: 组件更新的过程核心就是新旧vnode diff,对新旧节点相同以及不同的情况分别做不同的处理。新旧节点不同的更新流程是1、创建新节点 2、更新父占位符节点 3、删除旧节点;而新节点相同的更新流程是去获取它们的children,根据不同情况做不同的更新逻辑。最复杂的情况是新旧节点相同且它们都存在子节点,那么会执行updateChildren逻辑。

原理图 原理图